
Created by Neevia Document Converter trial version

Bluetooth NAP How To

This how to describe how to set up a deamon (the Network Access Point Daemon, napd),
developed by the mobilab group, useful in nomadic computing environment, where a set of
mobile devices is connected to the fixed infrastructure via Access Points (Bluetooth).

The napd must be executed on the AP in order to provide the access to the fixed network
infrastructure by mobile bluetooth users. The daemon set up PAN channels necessary for
the use of IP over L2CAP bluetooth channels: it wait for PAN connection requests and, on
accepted requests, create an IP network interface for the communication. It perform also
the natting (Network Address Translation), allowing mobile device to use private IP
network addresses and enabling the use of DHCP server in every cell (the zone covered
by an AP).

More specifically, the IP interfaces are created using BNEP (Bluetooth Network
Encapsulation Protocol): when a PAN connection is made, the Bluetooth PAN daemon
(distributed with the official linux Bluetooth protocol stack: BlueZ) create an ad-hoc IP
interface named bnepx (for the x-th connection). Thus, the pan daemon create an interface
for each connection. In order to allow the communication through an unique virtual
interface, enabling in that way the NAT service, it must be created a new virtual interface
(named pan0) and merge it with the bnepx interfaces created by PAN modules. Those
functionalities are provided by the napd using the bridge control modules, provided by
linux distributions. In other words, differently to the PAN daemon, our NAP daemon
expose an unique interface to the devices, which can always use the IP address of pan0
as default gateway, rather than use a different IP address for each connection. The
various bnepx interfaces created for each connection are bridged with the virtual pan0
interface through the bridge control utilities. The IP datagrams are then forwarded to the
fixed network via a normal eth0 interface (using natting). Figure below can clarify this
concepts. More information about the setup of bridging functionalities within the Bluetooth

PAN profile can be found at: bluez.sourceforge.net/contrib/HOWTO-PAN.

Below, we list the requirements, configuration notes and usage of the napd, referring to
our tests on the daemon.

bnepx

bnep0 Device 0

Device x

pan0 eth0

bridging

bridging

natting

Access Point with NAP features

Fixed
network

http://www.neevia.com

1. AP System Requirements:

• Mandrake Linux 9.1 distribution, Kernel version great or equal to 2.4.19;
• Bluetooth USB Dongle;
• Ethernet interface.

2. AP Software Requirements:

• BlueZ packages with PAN and sdp support: see the installation notes at
www.mobilab.unina.it/bluetooth.

• Bridge control: In order to install the bridge control functionalities, it's needed to
reconfigure the kernel: in the directory containing the kernel source and the kernel's
Makefile, digit:

 # make menuconfig

then select “networking options” -> “802.1d Ethernet Bridging” as kernel module
(<M>). The modules can be installed with the commands:

 # make modules
 # make modules_install

Finally, it's needed to install a control package, named as "bridge utils", useful for the
control of bridging functionalities. The package can be downloaded from
bridge.sf.net . After downloaded the package, extract the files with:

 # tar zxvf <package_name>

and install doing the following:

 # ./configure
 # make
 # make install

IMPORTANT NOTE: After the installation, please control where the program brctl
has been installed with the command:

 # whereis brctl

if the program isn't localized in /usr/local/bin, you have to change

appropriately the macro BRCTL in the scripts napd, makebridge and bridge-attach

provided with our code in the ./scripts directory.

• DHCP Daemon: the NAP can assign automatically the IP address to the devices by
installing a DHCP daemon, downloadable from ftp.isc.org/isc/dhcp. The installation
can be done as we described previously for the bridge utils. After the installation,

http://www.neevia.com

you must create a configuration file (named /etc/dhcpd.conf). Below is shown

an example of such a file:

default-lease-time 600;
max-lease-time 7200;
option subnet-mask 255.255.255.0;
option broadcast-address 192.168.0.255;
option routers 192.168.0.254;
option domain-name-servers 192.168.0.1, 192.168.0.2;

subnet 192.168.0.0 netmask 255.255.255.0 {
 range 192.168.0.10 192.168.0.100;
 range 192.168.0.150 192.168.0.200;
}

You can set the parameters (i.e lease time or addresses ranges) as you need for
your purposes. Furthermore, you must create an empty file, named

/var/state/dhcp/dhcpd.leases. An empty file can be created doing the

following:

 # touch <nome file>

Finally, the dhcp daemon can be started with verbose mode and listening on pan0
interface with the command:

 # dhcpd –d –f pan0

• IP forwarding and masquerading support: the forwarding and masquerating
(IPMASQ) allow IP packets routing and address translating, providing AP with NAT
functionalities. For kernels 2.4.x, you have to check if the IPMASQ is present as
module or statically compiled, doing the following:

• Run the command ls /proc/sys/net/ipv4. These items are required and
should be present regardless if your kernel built IPMASQ as modules or
statically:

• ip_dynaddr, ip_forward

• To check if IPMASQ was compiled statically into the kernel, run the

command /sbin/lsmod and see if and modules like the ones shown below at

the next point. No? Ok, now run the command ls /proc/net/ and see if you
see additional /proc files such as:

• ip_masquerade, ip_conntrack, ip_tables_names

If you see these /proc entries and there WEREN'T any kernel modules
loaded (shown via the "lsmod" command mentioned above), then your kernel
has the IPTABLES subsystem statically compiled into it and is ready to go to
use IPMASQ on this system.

http://www.neevia.com

• If your kernel uses IPTABLES via modules, most of the stuff listed above
should have been missing (because the modules probably aren't loaded).

Run the command ls /lib/modules/`uname -

r`/kernel/net/ipv4/netfilter/ where you should see files like:

• ip_conntrack.o, ip_conntrack_ftp.o, ip_conntrack_irc.o,
ip_nat_ftp.o, ip_nat_irc.o
ip_tables.o, ipt_MASQUERADE.o, iptable_nat.o, iptable_mangle.o,
iptable_filter.o

If you see those kernel files, IPTABLES was compiled using modules and
things look ready to go to use IPMASQ on this system. Further information
can be found at www.ecst.csuchico.edu/~dranch/LINUX/ipmasq/c-html.

Finally, you have to check if the program "iptables" is installed on your system (try
to launch it in root mode). If it isn't installed, you can download it
from www.netfilter.org, then install it with the same procedure shown about the
bridge utils.
For IPMASQ configuration, see next section.

3. IP masquerating configuration

For the modules loading and setup of IPMASQ, you can create and launch a script
file like the following one:

#!/bin/sh

echo -e "\n\nLoading simple ipmasq rules"

Location of the iptables and kernel module programs

If your Linux distribution came with a copy of iptables,
most likely all the programs will be located in /sbin. If
you manually compiled iptables, the default location will
be in /usr/local/sbin

** Please use the "whereis iptables" command to figure out
** where your copy is and change the path below to reflect
** your setup

#IPTABLES=/sbin/iptables
IPTABLES=/usr/local/sbin/iptables
DEPMOD=/sbin/depmod
MODPROBE=/sbin/modprobe

Setting the EXTERNAL and INTERNAL interfaces for the network: in our
case, eth0 is the external interface and pan0 is the internal virtual
interface created via brctl

EXTIF="eth0"
INTIF="pan0"
echo " External Interface: $EXTIF"
echo " Internal Interface: $INTIF"

echo -en " loading modules: "

http://www.neevia.com

Need to verify that all modules have all required dependencies
echo " - Verifying that all kernel modules are ok"
$DEPMOD -a

#Load the main body of the IPTABLES module - "iptable"

echo -en "ip_tables, "
$MODPROBE ip_tables

#Load the stateful connection tracking framework - "ip_conntrack"

echo -en "ip_conntrack, "
$MODPROBE ip_conntrack

#Load the FTP tracking mechanism for full FTP tracking

echo -en "ip_conntrack_ftp, "
$MODPROBE ip_conntrack_ftp

#Load the IRC tracking mechanism for full IRC tracking

echo -en "ip_conntrack_irc, "
$MODPROBE ip_conntrack_irc

#Load the general IPTABLES NAT code - "iptable_nat"
- Loaded automatically when MASQ functionality is turned on

- Loaded manually to clean up kernel auto-loading timing issues

echo -en "iptable_nat, "
$MODPROBE iptable_nat

#Loads the FTP NAT functionality into the core IPTABLES code

echo -en "ip_nat_ftp, "
$MODPROBE ip_nat_ftp

echo -e " Done loading modules.\n"

#CRITICAL: Enable IP forwarding since it is disabled by default since

echo " Enabling forwarding.."
echo "1" > /proc/sys/net/ipv4/ip_forward

Enable dynamic IP users:

echo " Enabling DynamicAddr.."
echo "1" > /proc/sys/net/ipv4/ip_dynaddr

Enable simple IP forwarding and Masquerading

echo " Clearing any existing rules and setting default policy.."
$IPTABLES -P INPUT ACCEPT
$IPTABLES -F INPUT
$IPTABLES -P OUTPUT ACCEPT
$IPTABLES -F OUTPUT
$IPTABLES -P FORWARD DROP
$IPTABLES -F FORWARD
$IPTABLES -t nat -F

http://www.neevia.com

echo "FWD: Allow all connections OUT and only existing ones IN"
$IPTABLES -A FORWARD -i $EXTIF -o $INTIF -m state --state \
 ESTABLISHED,RELATED -j ACCEPT
$IPTABLES -A FORWARD -i $INTIF -o $EXTIF -j ACCEPT
$IPTABLES -A FORWARD -j LOG

echo " Enabling SNAT (MASQUERADE) functionality on $EXTIF"
$IPTABLES -t nat -A POSTROUTING -o $EXTIF -j MASQUERADE

echo -e "Configuration done.\n"

The script can be loaded automatically at system's start-up saving it as

/etc/rc.d/rc.firewall.

4. napd compilation and execution

After extracted our source files and scripts, change the current directory to the one
containing the Makefile and the subdirectories src and scripts. Thus the nap
daemon can be compiled with the command

 # make

The make will create an executable file in the current directory named napd (and

also the .o files, removable using make clean). You can execute it in different

manners (with root privileges) from the current directory:

 # ./napd (launch the napd as a daemon)

or:

 # ./napd -n (launch the napd as a normal process)

or:

 # ./napd -v (launch the napd as a normal process, verbose mode)

NOTE: Before executing the napd, it is needed to activate the Bluetooth interface
and the service discovery protocol daemon, with the commands (in root mode):

 # hciconfig hci0 up
 # sdpd

You have also to execute the makebridge script, provided with our source file and

scripts in the scripts folder:

 # ./scripts/makebridge

such a script uses the bridge control functionalities to create the pan0 interface as a
bridge.

Furthermore, you have to copy by hand the script file bridge-attach (provided

with our source files and scripts in the scripts folder) in the directory

/etc/bluetooth. You should even check if that script have the privileges of

execution in root mode... briefly, do the following:

http://www.neevia.com

 # cp ./scripts/bridge-attach /etc/bluetooth/.
 # chmod 744 /etc/bluetooth/bridge-attach

On incoming requests, the daemon will create bnepx interfaces and will merge them

with pan0 through the bridge-attach script.

5. napd installation

The napd can also be installed, in order to be executed wherever you are working in
the file system, and providing an user level interface simpler to use than using
directly the executable file like we have shown in previous section. Once the
compilation took place (with the make command), you can install the daemon with:

 # make install

The installation will move the executable napd file in /opt directory (you can change
this directory by editing the makefile and change the EXECUTABLE macro), and
will copy the napd script in the /sbin folder. The napd script is a wrapper offering a
simple interface for use the daemon. You can start the daemon wherever directory
you are (and in root mode) by editing:

 # napd start

and you stop it in the same fashion, with napd stop.

To see what the daemon is doing, you can monitor the system log file, for example
by the command:

 # tail /var/log/messages

NOTE: after the napd is installed and before executing it, you have only to activate

the bluetooth interface with hciconfig hci0 up. There is no need to launch

neither the sdpd, nor the makebridge script or to copy the bridge-attach script in
other folders.

Eventually, you can uninstall the daemon with:

 # make uninstall

http://www.neevia.com

